Routine Name: Runge Kutta Methods
Author: Kyle Hovey
Language: C++
Description/Purpose:
This code tests the Runge Kutta Methods of second and fourth order as defined in the book.
Input:
The constants and base cases for the test cases.
Output:
This code prints a comparison of the approximated solution (via Runge Kutta) and the exact solution (computed analytically).
Usage/Example:
#include <iostream>
#include <array>
#include "rungeKutta/rungeKutta.h"
#include "../../testCases/src/testCases/testCases.h"
int main() {
// Delta t used in Runge Kutta method
const auto dt = 0.00001;
// Variables for evaluation
const std::tuple<double, double> domain = { 0.0, 1.0 };
const unsigned int steps = 5;
// Test cases for u' = λu
const auto alpha = 10.0;
const std::array<double, 3> lambdas = { 1, -1, 100 };
// Test cases for Logistic Equation
const auto gamma = 0.1;
const auto beta = 0.0001;
const std::array<double, 2> Pos = { 25, 40000 };
std::cout << "|||||||||| Lambda DiffEQ (second order) |||||||||";
std::cout << std::endl;
for (const auto lambda : lambdas) {
const auto approx = RungeKutta::genOrderTwoSolution<double>(
[=](const double& t, const double& u) -> double {
(void) t;
return lambda * u;
},
dt,
alpha
);
const auto exact = TestCases::genLambdaSolution<double>(lambda, alpha);
std::cout << std::endl << "=============" << std::endl;
std::cout << "Solving with lambda = " << lambda << std::endl;
printComparison<double>(exact, approx, domain, steps);
}
std::cout << "|||||||||| Lambda DiffEQ (fourth order) |||||||||";
std::cout << std::endl;
for (const auto lambda : lambdas) {
const auto approx = RungeKutta::genOrderFourSolution<double>(
[=](const double& t, const double& u) -> double {
(void) t;
return lambda * u;
},
dt,
alpha
);
const auto exact = TestCases::genLambdaSolution<double>(lambda, alpha);
std::cout << std::endl << "=============" << std::endl;
std::cout << "Solving with lambda = " << lambda << std::endl;
printComparison<double>(exact, approx, domain, steps);
}
std::cout << std::endl;
std::cout << "|||||||||| Logistic DiffEQ (second order) |||||||||";
std::cout << std::endl;
for (const auto Po : Pos) {
const auto approx = RungeKutta::genOrderTwoSolution<double>(
[=](const double& t, const double& P) -> double {
(void) t;
return gamma * P - beta * P * P;
},
dt,
Po
);
const auto exact = TestCases::genLogisticSolution(beta, gamma, Po);
std::cout << std::endl << "=============" << std::endl;
std::cout << "Solving with Po = " << Po << std::endl;
printComparison<double>(exact, approx, domain, steps);
}
std::cout << std::endl;
std::cout << "|||||||||| Logistic DiffEQ (fourth order) |||||||||";
std::cout << std::endl;
for (const auto Po : Pos) {
const auto approx = RungeKutta::genOrderFourSolution<double>(
[=](const double& t, const double& P) -> double {
(void) t;
return gamma * P - beta * P * P;
},
dt,
Po
);
const auto exact = TestCases::genLogisticSolution(beta, gamma, Po);
std::cout << std::endl << "=============" << std::endl;
std::cout << "Solving with Po = " << Po << std::endl;
printComparison<double>(exact, approx, domain, steps);
}
return EXIT_SUCCESS;
}
Output:
`|||||||||| Lambda DiffEQ (second order) |||||||||
=============
Solving with lambda = 1
exact(0) = 10
approx(0) = 10
exact(0.2) = 12.214
approx(0.2) = 12.214
exact(0.4) = 14.9182
approx(0.4) = 14.9182
exact(0.6) = 18.2212
approx(0.6) = 18.2212
exact(0.8) = 22.2554
approx(0.8) = 22.2554
exact(1) = 27.1828
approx(1) = 27.1825
=============
Solving with lambda = -1
exact(0) = 10
approx(0) = 10
exact(0.2) = 8.18731
approx(0.2) = 8.18731
exact(0.4) = 6.7032
approx(0.4) = 6.7032
exact(0.6) = 5.48812
approx(0.6) = 5.48812
exact(0.8) = 4.49329
approx(0.8) = 4.49329
exact(1) = 3.67879
approx(1) = 3.67883
=============
Solving with lambda = 100
exact(0) = 10
approx(0) = 10
exact(0.2) = 4.85165e+09
approx(0.2) = 4.85164e+09
exact(0.4) = 2.35385e+18
approx(0.4) = 2.35384e+18
exact(0.6) = 1.14201e+27
approx(0.6) = 1.142e+27
exact(0.8) = 5.54062e+35
approx(0.8) = 5.54055e+35
exact(1) = 2.68812e+44
approx(1) = 2.68539e+44
|||||||||| Lambda DiffEQ (fourth order) |||||||||
=============
Solving with lambda = 1
exact(0) = 10
approx(0) = 10
exact(0.2) = 12.214
approx(0.2) = 12.214
exact(0.4) = 14.9182
approx(0.4) = 14.9183
exact(0.6) = 18.2212
approx(0.6) = 18.2212
exact(0.8) = 22.2554
approx(0.8) = 22.2555
exact(1) = 27.1828
approx(1) = 27.1827
=============
Solving with lambda = -1
exact(0) = 10
approx(0) = 10
exact(0.2) = 8.18731
approx(0.2) = 8.18732
exact(0.4) = 6.7032
approx(0.4) = 6.70321
exact(0.6) = 5.48812
approx(0.6) = 5.48813
exact(0.8) = 4.49329
approx(0.8) = 4.49331
exact(1) = 3.67879
approx(1) = 3.67885
=============
Solving with lambda = 100
exact(0) = 10
approx(0) = 10
exact(0.2) = 4.85165e+09
approx(0.2) = 4.9004e+09
exact(0.4) = 2.35385e+18
approx(0.4) = 2.40139e+18
exact(0.6) = 1.14201e+27
approx(0.6) = 1.17677e+27
exact(0.8) = 5.54062e+35
approx(0.8) = 5.76666e+35
exact(1) = 2.68812e+44
approx(1) = 2.82307e+44
|||||||||| Logistic DiffEQ (second order) |||||||||
=============
Solving with Po = 25
exact(0) = 25
approx(0) = 25
exact(0.2) = 25.4922
approx(0.2) = 25.4922
exact(0.4) = 25.9937
approx(0.4) = 25.9937
exact(0.6) = 26.5049
approx(0.6) = 26.5049
exact(0.8) = 27.0259
approx(0.8) = 27.0259
exact(1) = 27.5568
approx(1) = 27.5568
=============
Solving with Po = 40000
exact(0) = 40000
approx(0) = 40000
exact(0.2) = 22570.2
approx(0.2) = 22570.2
exact(0.4) = 15815.2
approx(0.4) = 15815.2
exact(0.6) = 12228
approx(0.6) = 12228
exact(0.8) = 10003.8
approx(0.8) = 10003.8
exact(1) = 8490.15
approx(1) = 8490.22
|||||||||| Logistic DiffEQ (fourth order) |||||||||
=============
Solving with Po = 25
exact(0) = 25
approx(0) = 25
exact(0.2) = 25.4922
approx(0.2) = 25.4922
exact(0.4) = 25.9937
approx(0.4) = 25.9937
exact(0.6) = 26.5049
approx(0.6) = 26.5049
exact(0.8) = 27.0259
approx(0.8) = 27.0259
exact(1) = 27.5568
approx(1) = 27.5568
=============
Solving with Po = 40000
exact(0) = 40000
approx(0) = 40000
exact(0.2) = 22570.2
approx(0.2) = 22570.4
exact(0.4) = 15815.2
approx(0.4) = 15815.4
exact(0.6) = 12228
approx(0.6) = 12228.2
exact(0.8) = 10003.8
approx(0.8) = 10004
exact(1) = 8490.15
approx(1) = 8490.32
Implementation/Code:
The Runge Kutta method uses trial steps along the way between each iteration to cancel out lower-order errors. This results in a method that typically converges must faster than other techniques.
#include <functional>
#include <cmath>
#include <vector>
namespace RungeKutta {
template <typename T>
using endo = std::function<T(const T&)>;
template <typename T>
using driver = std::function<T(const T&, const T&)>;
/**
* Solve a very basic differential equation using a Runge Kutta technique.
* u' = f(t, u)
* @param {f} RHS of differential equation (utilizes uPrime)
* @param {dt} Differential of time between samples
* (output function will round to these)
* @param {uInit} Initial value of u(0)
* @return Function that gives you the output at time t
*/
template <typename T>
endo<T> genOrderTwoSolution(
const driver<T>& f,
const T& dt,
const T& uInit
) {
// Memoization cache
std::vector<T> cache = { };
cache.push_back(uInit);
return [=](const T& t) mutable -> T {
const auto step = std::floor(t / dt);
if (step >= cache.size()) {
const auto size = cache.size();
for (auto i = size; i <= step; ++i) {
const auto lastVal = cache[i - 1];
const auto kOne = dt * f(t, lastVal);
const auto kTwo = dt * f(t + dt / 2, lastVal + kOne / 2);
cache.push_back(lastVal + kTwo);
}
}
return cache[step];
};
}
/**
* Solve a very basic differential equation using a Runge Kutta technique.
* u' = f(t, u)
* @param {f} RHS of differential equation (utilizes uPrime)
* @param {dt} Differential of time between samples
* (output function will round to these)
* @param {uInit} Initial value of u(0)
* @return Function that gives you the output at time t
*/
template <typename T>
endo<T> genOrderFourSolution(
const driver<T>& f,
const T& dt,
const T& uInit
) {
// Memoization cache
std::vector<T> cache = { };
cache.push_back(uInit);
return [=](const T& t) mutable -> T {
const auto step = std::floor(t / dt);
if (step >= cache.size()) {
const auto size = cache.size();
for (auto i = size; i <= step; ++i) {
const auto lastVal = cache[i - 1];
const auto kOne = dt * f(t, lastVal);
const auto kTwo = dt * f(t + dt / 2, lastVal + kOne / 2);
const auto kThree = dt * f(t + dt / 2, lastVal + kTwo / 2);
const auto kFour = dt * f(t + dt, lastVal + kThree);
cache.push_back(lastVal + kFour);
}
}
return cache[step];
};
}
};